National Stem Cell Bank
National Stem Cell Bank (NSCB) is a biorepository of the human pluripotent stem cell lines. To be the world`s leading class as an infrastructure supporting regenerative medicine, the bank provides the high quality stem cells and related information for regenerative medicine. The bank will compliance with standards of bioethics and safety regulations.
Process
Researcher
National Stem Cell Bank
Steering Committee
Cell lines available from the bank
Collection of Pluripotent Stem Cells
Type | Number | Note |
---|---|---|
hESC | 19 | |
hiPSC | 106 |
|
Cell lines available from the bank
Cell type | Cell line | Provider | Origin and establishment method | Culture condition | QC data | NGS data |
Reference |
---|---|---|---|---|---|---|---|
hESC | SNUhES3 | Seoul National University |
ㆍOrigin: human embryo ㆍRegistry Number : hES12010005 |
ㆍFeeder (STO) ㆍhPSC media |
PDFdownload | ||
SNUhES4 | Seoul National University |
ㆍOrigin: human embryo ㆍRegistry Number : hES12010006 |
ㆍFeeder (STO) ㆍhPSC media |
PDFdownload | |||
SNUhES31 | Seoul National University |
ㆍOrigin: human embryo ㆍRegistry Number : hES12010037 |
ㆍFeeder-free ㆍVN-E8 |
PDFdownload | |||
CHA-hES15 | CHA University |
ㆍOrigin: human embryo ㆍRegistry Number : hES12010028 |
ㆍFeeder (STO) ㆍhPSC media |
PDFdownload | |||
hiPSC (healty donor cell-derived) |
hFmiPS1 | KNIH |
ㆍParental cell : Dermal fibroblast ㆍReprogram : modified RNA ㆍAbnormal karyotype |
ㆍFeeder (STO) ㆍhPSC media |
PDFdownload | ||
hFmiPS2 | KNIH |
ㆍParental cell : Dermal fibroblast ㆍReprogram : modified RNA |
ㆍFeeder-free ㆍVN-E8 |
PDFdownload | |||
hFSiPS3-1 | KNIH |
ㆍParental cell : Dermal fibroblast ㆍReprogram : Sendai virus ㆍhFSiPS1 sub-line |
ㆍFeeder-free ㆍVN-E8 |
PDFdownload | |||
hUSiPS2 | KNIH |
ㆍParental cell : Urinal cell ㆍReprogram : Sendai virus |
ㆍFeeder-free ㆍVN-E8 |
PDFdownload | |||
hAdMSiPS1 | KNIH |
ㆍParental cell : Adipocyte-MSC, TALEN ㆍReprogram : Sendai virus |
ㆍFeeder (STO) ㆍhPSC media |
PDFdownload | |||
CMC-hiPSC-003 | The Catholic University of Korea |
ㆍParental cell : Bone marrow ㆍReprogram : Sendai virus ㆍHLA-homozygote |
ㆍFeeder-free ㆍVN-E8 |
PDFdownload | |||
CMC-hiPSC-005 | The Catholic University of Korea |
ㆍParental cell : Cord blood ㆍReprogram : Sendai virus ㆍHLA-homozygote ㆍAbnormal karyotype |
ㆍFeeder-free ㆍVN-E8 |
PDFdownload | |||
CMC-hiPSC-009 | The Catholic University of Korea |
ㆍParental cell : Cord blood ㆍReprogram : Sendai virus ㆍHLA-homozygote |
ㆍFeeder-free ㆍVN-E8 |
PDFdownload | |||
CMC-hiPSC-011 | The Catholic University of Korea |
ㆍParental cell : Cord blood ㆍReprogram : Sendai virus ㆍHLA-homozygote |
ㆍFeeder-free ㆍVN-E8 |
PDFdownload | |||
CMC-hiPSC-022 | The Catholic University of Korea |
ㆍParental cell : Cord blood ㆍReprogram : Sendai virus ㆍHLA-homozygote |
ㆍFeeder-free ㆍVN-E8 |
PDFdownload | |||
NU01-EiPS07 | KNIH |
ㆍParental cell : Urinal cell ㆍReprogram : Episomal vector |
ㆍFeeder-free ㆍVN-E8 |
PDFdownload | |||
PB01-EiPS21 | KNIH |
ㆍParental cell : Peripheral blood cell ㆍReprogram : Episomal vector |
ㆍFeeder-free ㆍVN-E8 |
PDFdownload | |||
Disease -Specific hiPSC |
DKH005i-A | KNIH |
ㆍParental cell : Peripheral blood cell ㆍReprogram : Sendai virus ㆍDisease : Eye disease, Senior Loken syndrome |
ㆍFeeder-free ㆍVN-E8 |
PDFdownload | ||
DKH090i-A | KNIH |
ㆍParental cell : Peripheral blood ㆍReprogram : Sendai virus ㆍDisease : Eye disease, Leber congenital amaurosis |
ㆍFeeder-free ㆍVN-E8 |
PDFdownload | |||
LQT01-hiPSC | KNIH |
ㆍParental cell : Peripheral blood ㆍReprogram : Sendai virus ㆍDisease : Heart-signaling disorder, long QT syndrome type 2, KCNH2 (c.453delC) |
ㆍFeeder-free ㆍVN-E8 |
PDFdownload | |||
LQT08-hiPSC | KNIH |
ㆍParental cell : Peripheral blood ㆍReprogram : Sendai virus ㆍDisease : Heart-signaling disorder, long QT syndrome type 1, Brugada syndrome, KCNQ1 (c.569G>A) |
ㆍFeeder-free ㆍVN-E8 |
PDFdownload | |||
Fluorescent protein-tagged hiPSC |
NCRM5AS1-iCAGcGFP.c9 | NIH-CRM (U.S) |
ㆍGenetic modification (GFP), TALEN ㆍParental cell : Peripheral blood (CD34+) ㆍReprogram : Episomal vector |
ㆍFeeder-free ㆍVN-E8 |
PDFdownload | ||
CMC-003i-Nestin.EGFP | KNIH |
ㆍGenetic modification (EGFP in Nestin gene), CRISPR/CAS9 ㆍParental cell : CMC-hiPSC-003 |
ㆍFeeder-free ㆍVN-E8 |
PDFdownload | |||
CMC-003i-Pdx1.EGFP | KNIH |
ㆍGenetic modification (EGFP in PDX1 gene), CRISPR/CAS9 ㆍParental cell : CMC-hiPSC-003 |
ㆍFeeder-free ㆍVN-E8 |
PDFdownload | |||
PB01-EiPS21 (GFP-NLS7) |
KNIH |
ㆍGenetic modification (EGFP-NLS in AAVS1 site), CRISPR/CAS9 ㆍParental cell : PB01-EiPS21 |
ㆍFeeder-free ㆍStemFlex |
PDFdownload | |||
PB01-EiPS21(Ruby2) | KNIH |
ㆍGenetic modification (Ruby in AAVS1 site), CRISPR/CAS9 ㆍParental cell : PB01-EiPS21 |
ㆍFeeder-free ㆍStemFlex |
PDFdownload | |||
PB01-EiPS21-EGFP04 | KNIH |
ㆍGenetic modification (EGFP in AAVS1 site), CRISPR/CAS9 ㆍParental cell : PB01-EiPS21 |
ㆍFeeder-free ㆍVN-E8 |
PDFdownload | |||
PB01-EiPS21-EGFP05 | KNIH |
ㆍGenetic modification (EGFP in AAVS1 site), CRISPR/CAS9 ㆍParental cell : PB01-EiPS21 |
ㆍFeeder-free ㆍVN-E8 |
PDFdownload | |||
Gene-Edited hiPSC | hiPSC-TLR2KO | KNIH |
ㆍGenetic modification (TLR2 knock-out), CRISPR/CAS9 ㆍ(parental cell) modified from hiPSC CMC-hiPSC-003 ㆍParental cell : CMC-hiPSC-003 |
ㆍFeeder-free ㆍVN-E8 |
PDFdownload | ||
hiPSC-TLR3KO-A49 | KNIH |
ㆍGenetic modification (TLR3 knock-out), CRISPER/CAS9 ㆍParental cell : CMC-hiPSC-003 |
ㆍFeeder-free ㆍVN-E8 |
PDFdownload | |||
hiPSC-TLR7KO-A59 | KNIH |
ㆍGenetic modification (TLR7 knock-out), CRISPER/CAS9 ㆍParental cell : CMC-hiPSC-003 |
ㆍFeeder-free ㆍVN-E8 |
PDFdownload | |||
hiPSC-TLR8KO-A10 | KNIH |
ㆍGenetic modification (TLR8 knock-out), CRISPER/CAS9 ㆍParental cell : CMC-hiPSC-003 |
ㆍFeeder-free ㆍVN-E8 |
PDFdownload | |||
hFSiPS1_DUSP6KO | KNIH |
ㆍGenetic modification (DUSP6 knock-out), CRISPR/CAS9 ㆍParental cell : hFSiPS1 |
ㆍFeeder-free ㆍVN-E8 |
PDFdownload | |||
hFSiPS1_DUSP6KOA | KNIH |
ㆍGenetic modification (DUSP6 knock-out), CRISPR/CAS9 ㆍParental cell : hFSiPS1 hFSiPS1_DUSP6KO subline |
ㆍFeeder-free ㆍVN-E8 |
PDFdownload |
Deposition Information
Please contact the National Stem Cell Bank (NSCB)
KSCB International Collaboration
Collaborations
Related organization & society
The GMP Manufacturing facility
The GMP Manufacturing facility which is belonged to the National Center for Stem Cell and Regerative Medicine (NCSR) was opened in 2016 to accelerate clinical research of the stem cell and regenerative medicine field. In addition to manufacturing and distribution of iPSC sources that can be used for clinical research, we support manufacture of cell therapeutics for clinical research. Recently, by starting a GMP training course for manufacture of advanced regenerative therapeutics, we expect that the GMP market will be facilitated.
Process
Detailed Service
GMP Manufacturing Facilities
Floors | Cell Name |
---|---|
5 | AHUs |
4 | Maintenance Floor |
3 | Production, QC Lab., Warehouse |
2 | Cell Bank, R&D Lab., Office |
1 | Meeting room, BMS room |
B1 | Mechanical, Electrical |
Procedure for GMP Manufacturing Service
Requirements to Apply
Steps to Apply
1
2
3
4
Criteria of Approval
Major GMP Equipment
Division | Species | Amounts |
---|---|---|
Utility | HVAC System, Gas System, BMS, TMS, PMS, LN2 System, etc. | 45 |
Process | BSC, CO2 Incubator, Centrifuge, RP Microscope, CRF, etc. | 104 |
QC | Fluorescent Microscope, FACS, Endotoxin Analyser, RT-PCR, Cytometer, NAE, Air Particle Counter, Air Sampler, etc. | 71 |
Storage | LN2 Tank, Cell Storage Tank, Deep Freezer, Refrigerator, Freezer, etc. | 23 |
Total | 243 |
Time to Apply
Anytime throughout the year
Please contact the National Center for Stem Cell and Regenerative Medicine (NCSR)
Type | Link |
---|---|
SNP chip(CNV) | PDFdownload |
WES(SNP&INDEL) | PDFdownload |
External link - opens in a new window | |
RNA-seq | External link - opens in a new window |
External link - opens in a new window | |
Methyl-seq | External link - opens in a new window |
Type | Link |
---|---|
SNP chip(CNV) | PDFdownload |
External link - opens in a new window | |
WES(SNP&INDEL) | PDFdownload |
External link - opens in a new window | |
RNA-seq | External link - opens in a new window |
Methyl-seq | External link - opens in a new window |
Type | Link |
---|---|
SNP chip(CNV) | PDFdownload |
WES(SNP&INDEL) | PDFdownload |
External link - opens in a new window | |
RNA-seq | External link - opens in a new window |
External link - opens in a new window | |
Methyl-seq | External link - opens in a new window |
Type | Link |
---|---|
SNP chip(CNV) | PDFdownload |
WES(SNP&INDEL) | PDFdownload |
External link - opens in a new window | |
RNA-seq | External link - opens in a new window |
Methyl-seq | External link - opens in a new window |
Type | Link |
---|---|
SNP chip(CNV) | PDFdownload |
External link - opens in a new window | |
WES(SNP&INDEL) | External link - opens in a new window |
RNA-seq | External link - opens in a new window |
Methyl-seq | External link - opens in a new window |
Type | Link |
---|---|
SNP chip(CNV) | PDFdownload |
WES(SNP&INDEL) | PDFdownload |
External link - opens in a new window | |
RNA-seq | External link - opens in a new window |
Methyl-seq | External link - opens in a new window |
Type | Link |
---|---|
SNP chip(CNV) | PDFdownload |
External link - opens in a new window | |
WES(SNP&INDEL) | |
RNA-seq | |
Methyl-seq |
Type | Link |
---|---|
SNP chip(CNV) | PDFdownload |
External link - opens in a new window | |
WES(SNP&INDEL) | PDFdownload |
External link - opens in a new window | |
RNA-seq | External link - opens in a new window |
Methyl-seq | External link - opens in a new window |
Type | Link |
---|---|
SNP chip(CNV) | PDFdownload |
External link - opens in a new window | |
WES(SNP&INDEL) | PDFdownload |
External link - opens in a new window | |
RNA-seq | External link - opens in a new window |
Methyl-seq | External link - opens in a new window |
Type | Link |
---|---|
SNP chip(CNV) | PDFdownload |
External link - opens in a new window | |
WES(SNP&INDEL) | PDFdownload |
External link - opens in a new window | |
External link - opens in a new window | |
RNA-seq | External link - opens in a new window |
Methyl-seq |
Type | Link |
---|---|
SNP chip(CNV) | PDFdownload |
External link - opens in a new window | |
WES(SNP&INDEL) | PDFdownload |
External link - opens in a new window | |
RNA-seq | External link - opens in a new window |
Methyl-seq | External link - opens in a new window |
Type | Link |
---|---|
SNP chip(CNV) | PDFdownload |
External link - opens in a new window | |
WES(SNP&INDEL) | External link - opens in a new window |
RNA-seq | External link - opens in a new window |
Methyl-seq | External link - opens in a new window |
Type | Link |
---|---|
SNP chip(CNV) | External link - opens in a new window |
WES(SNP&INDEL) | |
RNA-seq | |
Methyl-seq |
Type | Link |
---|---|
SNP chip(CNV) | PDFdownload |
External link - opens in a new window | |
WES(SNP&INDEL) | |
RNA-seq | |
Methyl-seq |
Type | Link |
---|---|
SNP chip(CNV) | PDFdownload |
External link - opens in a new window | |
WES(SNP&INDEL) | |
RNA-seq | |
Methyl-seq |
Type | Link |
---|---|
SNP chip(CNV) | PDFdownload |
External link - opens in a new window | |
WES(SNP&INDEL) | |
RNA-seq | |
Methyl-seq |
Type | Link |
---|---|
SNP chip(CNV) | PDFdownload |
WES(SNP&INDEL) | PDFdownload |
External link - opens in a new window | |
RNA-seq | External link - opens in a new window |
Methyl-seq | External link - opens in a new window |
Type | Link |
---|---|
SNP chip(CNV) | PDFdownload |
External link - opens in a new window | |
WES(SNP&INDEL) | |
RNA-seq | |
Methyl-seq |
Type | Link |
---|---|
SNP chip(CNV) | PDFdownload |
External link - opens in a new window | |
WES(SNP&INDEL) | |
RNA-seq | |
Methyl-seq |
Type | Link |
---|---|
SNP chip(CNV) | |
WES(SNP&INDEL) | |
RNA-seq | External link - opens in a new window |
External link - opens in a new window | |
Methyl-seq |
Type | Link |
---|---|
SNP chip(CNV) | |
WES(SNP&INDEL) | |
RNA-seq | External link - opens in a new window |
External link - opens in a new window | |
Methyl-seq |
종류 | 세포주 명 | 참고문헌 | DOI Link |
---|---|---|---|
hESC | SNUhES3 | Oh SK et al. Derivation and characterization of new human embryonic stem cell lines: SNUhES1, SNUhES2, SNUhES3. Stem Cells. 2005 Feb;23(2):211-9. | External link - opens in a new window |
Lee J-Y et al. Registration of human embryonic stem cell lines: Korea, 2010. Osong Public Health Res Perspect. 2011 Sep;2(2):141-7. | External link - opens in a new window | ||
Kim JH et al. Korea National Stem Cell Bank. Stem Cell Res. 2021 May;53:102270. | External link - opens in a new window | ||
SNUhES4 | Lee J-Y et al. Registration of human embryonic stem cell lines: Korea, 2010. Osong Public Health Res Perspect. 2011 Sep;2(2):141-7. | External link - opens in a new window | |
Kim JH et al. Korea National Stem Cell Bank. Stem Cell Res. 2021 May;53:102270. | External link - opens in a new window | ||
SNUhES31 | Lee J-Y et al. Registration of human embryonic stem cell lines: Korea, 2010. Osong Public Health Res Perspect. 2011 Sep;2(2):141-7. | External link - opens in a new window | |
Jo HY et al. Functional in vivo and in vitro effects of 20q11.21 genetic aberrations on hPSC differentiation. Sci Rep. 2020 Oct 29;10(1):18582. | External link - opens in a new window | ||
Kim JH et al. Korea National Stem Cell Bank. Stem Cell Res. 2021 May;53:102270. | External link - opens in a new window | ||
Yoo DH et al. DUSP6 is a memory retention feedback regulator of ERK signaling for cellular resilience of human pluripotent stem cells in response to dissociation. Sci Rep. 2023 Apr 7;13(1):5683. | External link - opens in a new window | ||
CHA-hES15 | Hwnag ST et al. The expansion of human ES and iPSC cells on porous membranes and proliferating human adipose-derived feeder cells. Biomaterials. 2010 Nov;31(31):8012-21. | External link - opens in a new window | |
Lee J-Y et al. Registration of human embryonic stem cell lines: Korea, 2010. Osong Public Health Res Perspect. 2011 Sep;2(2):141-7. | External link - opens in a new window | ||
Kim SJ et al. Generation of hematopoietics stem cells from human embryonic stem cells using a defined, stepwise, serumfree replacement free monolyer culture method. Blood Research. 2017 Mar;52(1):37-43. | External link - opens in a new window | ||
Jo HY et al. Functional in vivo and in vitro effects of 20q11.21 genetic aberrations on hPSC differentiation. Sci Rep. 2020 Oct 29;10(1):18582. | External link - opens in a new window | ||
Kim JH et al. Korea National Stem Cell Bank. Stem Cell Res. 2021 May;53:102270. | External link - opens in a new window |
종류 | 세포주 명 | 참고문헌 | DOI Link |
---|---|---|---|
hiPSC(healty donor) | hFmiPS1 | Uhm KO et al. Generation of human induced pluripotent stem cell lines from human dermal fibroblasts using a modified RNA system. Stem Cell Res. 2017 Oct;24:148-150. | External link - opens in a new window |
Jo HY et al. Functional in vivo and in vitro effects of 20q11.21 genetic aberrations on hPSC differentiation. Sci Rep. 2020 Oct 29;10(1):18582. | External link - opens in a new window | ||
Kim JH et al. Korea National Stem Cell Bank. Stem Cell Res. 2021 May;53:102270. | External link - opens in a new window | ||
hFmiPS2 | Uhm KO et al. Generation of human induced pluripotent stem cell lines from human dermal fibroblasts using a modified RNA system. Stem Cell Res. 2017 Oct;24:148-150. | External link - opens in a new window | |
Jo HY et al. Functional in vivo and in vitro effects of 20q11.21 genetic aberrations on hPSC differentiation. Sci Rep. 2020 Oct 29;10(1):18582. | External link - opens in a new window | ||
Kim JH et al. Korea National Stem Cell Bank. Stem Cell Res. 2021 May;53:102270. | External link - opens in a new window | ||
hFSiPS1/hFSiPS3-1 | Kim JY et al. HDAC6 Inhibitors rescued the defective axonal mitochondrial movement in motor neurons derived from the induced pluripotent stem cells of peripheral neuropathy patient swith HSPB1 Mutation. Stem Cells Int. 2016 2016:9475981. | External link - opens in a new window | |
Uhm KO et al. Generation of human induced pluripotent stem cell lines from human dermal fibroblasts using a non-integration system. Stem Cell Res. 2017 May;21:13-15. | External link - opens in a new window | ||
Choi M et al. Multilayer Nanofilms via inkjet printing for stabilizing growth factor and designing desired cell developments. Adv Healthc Mater. 2017 Jul;6(14). | External link - opens in a new window | ||
Han U et al. Efficient encapsulation and sustained release of basic fibroblast growth factor in nanofilm : extension of the feeding cycle of human induced pluripotent stem cell culture. ACS Appl Mater Interfaces. 2017 Aug 2;9(30):25087-25097. | External link - opens in a new window | ||
Oh M et al. Promotive effects of human induced pluripotent stem cell-conditioned medium on the proliferation and migration of dermal fibroblasts. Biotechnol Bioproc E. 2017 Nov 22, 561-568. | External link - opens in a new window | ||
Oh M et al. Exosomes derived from human induced pluripotent stem cells ameliorate the aging of skin fibroblasts. Int J Mol Sci. 2018 Jun 9;19(6):1715. | External link - opens in a new window | ||
Han U et al. Construction of nano-scale cellular environments by coating a multilayer nanofilm on the surface of human induced pluripotent stem cells. Nanoscale. 2019 Jul 28;11(28):13541-13551. | External link - opens in a new window | ||
Lee H et al. Derivation of Cell-Engineered Nanovesicles from Human Induced Pluripotent Stem Cells and Their Protective Effect on the Senescence of Dermal Fibroblasts. Int J Mol Sci. 2020 Jan 5;21(1):343. | External link - opens in a new window | ||
Kim YK et al. Generation of a GLA knock-out human-induced pluripotent stem cell line, KSBCi002-A-1, using CRISPR/Cas9. Stem Cell Res. 2020 Jan;42:101676. | External link - opens in a new window | ||
Yoo DH et al. Simple differentiation method using FBS identifies DUSP6 as a marker for fine-tuning of FGF-ERK signaling activity in human pluripotent stem cells. Biochem Biophys Res Commun. 2020 Jan 8;521(2):375-382. | External link - opens in a new window | ||
Cha BH et al. Efficient Isolation and enrichment of mesenchymal stem cells from human embryonic stem cells by utilizing the Interaction between integrin α5β1 and fibronectin. Adv Sci (Weinh). 2020 Jul 19;7(17):2001365. | External link - opens in a new window | ||
Jo HY et al. Functional in vivo and in vitro effects of 20q11.21 genetic aberrations on hPSC differentiation. Sci Rep. 2020 Oct 29;10(1):18582. | External link - opens in a new window | ||
특허출원 : 물리적 자극을 통한 심근세포 분화 성숙도 및 기능성 향상 방법, 출원인 : 한국화학연구원, 출원번호 : 10-2020-0189736, 출원일자 : 2020년 12월 31일 |
|||
Han U et al. Nano-structure of vitronectin/heparin on cell membrane for stimulating single cell in iPSC-derived embryoid body. iScience. 2021 Mar 11;24(4):102297. | External link - opens in a new window | ||
Kim JH et al. Korea National Stem Cell Bank. Stem Cell Res. 2021 May;53:102270. | External link - opens in a new window | ||
Heo HR et al. Generation of marcrophage containing alveolar organoids derived from humna pluripotent stem cells for pulmonary fibrosis modeling and drug efficacy testing. Cell Biosci. 2021 Dec 18;11(1):216. | External link - opens in a new window | ||
Lee SJ et al. Improving Generation of Cardiac Organoids from Human Pluripotent Stem Cells Using the Aurora Kinase Inhibitor ZM447439. Biomedicines. 2021 Dec 20;9(12):1952. | External link - opens in a new window | ||
특허출원 :오로라 키나아제 억제제를 이용하는 심근세포 및 심장 오가노이드의 제조방법, 출원인 : 한국화학연구원, 출원번호 : 10-2021-0179903, 출원일자 : 2021년 12월 15일 |
|||
특허출원 : 줄기세포로부터 도파민 신경전구세포 분화 유도 방법, 출원인 : 조명수 등, 출원번호 : 10-2022-0049108, 출원일자 : 2022년 4월 20일 |
|||
특허출원 : DUSP6가 결핍된 줄기세포 및 이의 용도 (DUSP6 deficient stem cells and their use), 출원인 : 국립보건연구원장, 출원번호 : 10-2022-0073479, 출원일자 : 2022년 6월 16일 |
|||
Yoo DH et al. DUSP6 is a memory retention feedback regulator of ERK signaling for cellular resilience of human pluripotent stem cells in response to dissociation. Sci Rep. 2023 Apr 7;13(1):5683. | External link - opens in a new window | ||
hUSiPS2 | Uhm KO et al. Generation of human induced pluripotent stem cells from urinary cells of a healthy donor using a non-integration system. Stem Cell Res. 2017 May;21:44-46. | External link - opens in a new window | |
Jo HY et al. Functional in vivo and in vitro effects of 20q11.21 genetic aberrations on hPSC differentiation. Sci Rep. 2020 Oct 29;10(1):18582. | External link - opens in a new window | ||
Kim JH et al. Korea National Stem Cell Bank. Stem Cell Res. 2021 May;53:102270. | External link - opens in a new window | ||
hAdMSiPS1 | Choi HY et al. Generation of a human induced pluripotent stem cell line, KSCBi003-A, from human adipose tissue-derived mesenchymal stem cells using a chromosomal integration-free system. Stem Cell Res. 2018 Aug;31:1-4. | External link - opens in a new window | |
Kim JH et al. Korea National Stem Cell Bank. Stem Cell Res. 2021 May;53:102270. | External link - opens in a new window | ||
CMC-hiPSC-003 |
특허출원 : HLA 동형접합체의 제대혈단핵구세포 유래 인간전분화능세포를 이용한 연골세포 분화용 조성물 제조방법, 출원인 : 주지현 등, 출원번호 : 10-2017-0178684, 출원일자 : 2017년 12월 22일 |
||
Rim YA et al. Recent progress of national banking project on homozygous HLA-typed induced pluripotent stem cells in South Korea. J Tissue Eng Regen Med. 2018 Mar;12(3):e1531-e1536. | External link - opens in a new window | ||
Lim JJ et al. Maintenance of the PSCs under Xeno-Free and chemically defined culture conditions. Int J Stem Cells. 2019 Nov 30;12(3):484-496. | External link - opens in a new window | ||
Han HW. Drug Discovery Platform Targeting M. tuberculosis with Human Embryonic Stem Cell-Derived Macrophages. Stem Cell Reports. 2019 Dec 10;13(6):980-991. | External link - opens in a new window | ||
Jeong S et al. BMP4 and perivascular cells promote hematopoietic differentiation of human pluripotent stem cells in a differentiation stage-specific manner. Exp Mol Med. 2020 Jan;52(1):56-65. | External link - opens in a new window | ||
Jo HY et al, Development of genetic quality tests for good manufacturing practice-compliant induced pluripotent stem cells and their derivatives. Sci Rep. 2020 Mar 3;10(1):3939. | External link - opens in a new window | ||
Ha TW et al. Characterization of Endoplasmic Reticulum (ER) in Human Pluripotent Stem Cells Revealed Increased Susceptibility to Cell Death upon ER Stress. Cells. 2020 Apr 26;9(5):1078. | External link - opens in a new window | ||
특허출원 : 줄기세포 유래 자연살해세포 및 그 제조방법, 출원인 : 테라베스트, 출원번호 : 10-2020-0096415, 출원일자 : 2020년 7월 31일 |
|||
Mun SJ et al. Effect of microbial short-chain fatty acids on CYP3A4-mediated metabolic activation of human pluripotent stem cell-derived liver orgaoids. Cells. 2021 Jan 11;10(1):126. | External link - opens in a new window | ||
Han U et al. Nano-structure of vitronectin/heparin on cell membrane for stimulating single cell in iPSC-derived embryoid body. iScience. 2021 Mar 11;24(4):102297. | External link - opens in a new window | ||
Kim JH et al. Korea National Stem Cell Bank. Stem Cell Res. 2021 May;53:102270. | External link - opens in a new window | ||
Jo HY et al. Single-Cell RNA Sequencing of Human Pluripotent Stem Cell-Derived Macrophages for Quality Control of The Cell Therapy Product.. Front Genet. 2022 Jan 31;12:658862. | External link - opens in a new window | ||
Kook MG et al. Generation of Cortical Brain Organoid with Vascularization by Assembling with Vascular Spheroid. Int J Stem Cells. 2022 Feb 28;15(1):85-94. | External link - opens in a new window | ||
Kim MJ et al. Standard operating protocol of hepatic organoid differentiation from human induced pluripotent stem cells. Organoid. 2022 May 2:e5. | External link - opens in a new window | ||
Kim J et al. Neurotoxicity of phenylalanine on human iPSC-derived cerebral organoids. Mol Genet Metab. 2022 Jun;136(2):132-144. | External link - opens in a new window | ||
Seo HR et al. Human pluripotent stem cell-derived alveolar organoid with macrophages. Int J Mol Sci. 2022 Aug 16;23(16):9211. | External link - opens in a new window | ||
Jung SY et al. Wnt-activating human skin organoid model of atopic dermatitis induced by Staphylococcus aureus and its protective effects by Cutibacterium acnes. iScience. 2022 Sep 16;25(10):105150. | External link - opens in a new window | ||
Kong D et al. Cortical-blood vessel assembloids exhibit Alzheimer's disease phenotypees by activating glia after SARS-CoV-2 infection. Cell Death Discov. 2023 Jan 25;9(1):32. | External link - opens in a new window | ||
CMC-hiPSC-005 |
특허출원 : HLA 동형접합체의 제대혈단핵구세포 유래 인간전분화능세포를 이용한 연골세포 분화용 조성물 제조방법, 출원인 : 주지현 등, 출원번호 : 10-2017-0178684, 출원일자 : 2017년 12월 22일 |
||
Rim YA et al. Recent progress of national banking project on homozygous HLA-typed induced pluripotent stem cells in South Korea. J Tissue Eng Regen Med. 2018 Mar;12(3):e1531-e1536. | External link - opens in a new window | ||
Kim JH et al. Korea National Stem Cell Bank. Stem Cell Res. 2021 May;53:102270. | External link - opens in a new window | ||
CMC-hiPSC-009 |
특허출원 : HLA 동형접합체의 제대혈단핵구세포 유래 인간전분화능세포를 이용한 연골세포 분화용 조성물 제조방법, 출원인 : 주지현 등, 출원번호 : 10-2017-0178684, 출원일자 : 2017년 12월 22일 |
||
Rim YA et al. Recent progress of national banking project on homozygous HLA-typed induced pluripotent stem cells in South Korea. J Tissue Eng Regen Med. 2018 Mar;12(3):e1531-e1536. | External link - opens in a new window | ||
특허출원 : 세포 비접착성 PEG 고분자 기판 상에 형성된 심근세포 스페로이드 및 이의 제조방법, 출원인 : 이재혁 등, 출원번호 : 10-2019-0160657, 출원일자 : 2019년 12월 05일 |
|||
Jeong S et al. BMP4 and perivascular cells promote hematopoietic differentiation of human pluripotent stem cells in a differentiation stage-specific manner. Exp Mol Med. 2020 Jan;52(1):56-65. | External link - opens in a new window | ||
특허출원 : 줄기세포 유래 자연살해세포 및 그 제조방법, 출원인 : 테라베스트, 출원번호 : 10-2020-0096415, 출원일자 : 2020년 7월 31일 |
|||
Kim MJ et al. Standard operating protocol of hepatic organoid differentiation from human induced pluripotent stem cells. Organoid. 2022 May 2:e5. | External link - opens in a new window | ||
CMC-hiPSC-011 |
특허출원 : HLA 동형접합체의 제대혈단핵구세포 유래 인간전분화능세포를 이용한 연골세포 분화용 조성물 제조방법, 출원인 : 주지현 등, 출원번호 : 10-2017-0178684, 출원일자 : 2017년 12월 22일 |
||
Rim YA et al. Recent progress of national banking project on homozygous HLA-typed induced pluripotent stem cells in South Korea. J Tissue Eng Regen Med. 2018 Mar;12(3):e1531-e1536. | External link - opens in a new window | ||
Kim Y et al. Establishment of a complex skin structure via layered co-culture of keratinocytes and fibroblasts derived from induced pluripotent stem cells. Stem Cell Res Ther. 2018 Aug 13;9(1):217. | External link - opens in a new window | ||
특허출원 : 인간 만능줄기세포로부터 제작된 3D 오가노이드를 해체하여 세포를 다량 확보하는 분화방법, 출원인 : 이상훈 등, 출원번호 : 10-2019-0128602, 출원일자 : 2019년 10월 16일 |
|||
Jeong S et al. BMP4 and perivascular cells promote hematopoietic differentiation of human pluripotent stem cells in a differentiation stage-specific manner. Exp Mol Med. 2020 Jan;52(1):56-65. | External link - opens in a new window | ||
Choi SW et al. Antiviral activity and safety of remdesivir against SARS-CoV-2 infection in human pluripotent stem cell-derived cardiomyocytes. Antiviral Res. 2020 Dec;184:104955. | External link - opens in a new window | ||
특허출원 : 인간만능줄기세포로부터 제작된 3D 오가노이드를 해체하여 세포를 다량 확보하는 분화방법, 출원인 : 이상훈 등, 출원번호 : PCT/KR2020/000581, 출원일자 : 2020년 1월 13일 |
|||
특허출원 : 인간 전분화능줄기세포 유래 심근세포를 이용한 SARS-CoV-2 바이러스 대상 후보 약물의 부정맥 위험성 평가용 조성물 및 이를 이용한 부정맥 위험성 평가 방법, 출원인 : 문성환 등, 출원번호 : 10-2020-0081612, 출원일자 : 2020년 7월 2일 |
|||
특허출원 : 인간 전분화능줄기세포 유래 심근세포를 이용한 SARS-CoV-2 바이러스 대상 후보 약물의 심근세포 독성평가용 조성물 및 이를 이용한 심근세포 독성 평가 방법, 출원인 : 문성환 등, 출원번호 : 10-2020-0084634, 출원일자 : 2020년 7월 9일 |
|||
특허출원 : 동결보관 및 저산소 조건에서의 생존율을 향상시키는 심근세포 응집체 제작 기술, 출원인 : 문성환 등, 출원번호 : 10-2020-0091585, 출원일자 : 2020년 7월 23일 |
|||
특허출원 : 동결보관 및 저산소 조건에서의 생존율을 향상시키는 심근세포 응집체 제작 기술, 출원인 : 문성환 등, 출원번호 : PCT/KR2020/011077, 출원일자 : 2020년 8월 14일 |
|||
특허출원 : 인간 전분화능줄기세포 유래 심근세포를 이용한 SARS-CoV-2 바이러스 대상 후보 약물의 심근세포 독성평가용 조성물 및 이를 이용한 심근세포 독성 평가 방법, 출원인 : 문성환 등, 출원번호 : PCT/KR2020/016771, 출원일자 : 2020년 11월 25일 |
|||
특허출원 : 인간 전분화능줄기세포 유래 심근세포를 이용한 SARS-CoV-2 바이러스 대상 후보 약물의 부정맥 위험성 평가용 조성물 및 이를 이용한 부정맥 위험성 평가 방법, 출원인 : 문성환 등, 출원번호 : PCT/KR2020/016777, 출원일자 : 2020년 11월 25일 |
|||
특허등록 : 동결보관 및 저산소 조건에서의 생존율을 향상시키는 심근세포 응집체 제작 기술, 등록인 : 문성환 등, 등록번호 : 10-2188256, 등록일자 : 2020년 12월 02일 |
|||
Kim JH et al. Korea National Stem Cell Bank. Stem Cell Res. 2021 May;53:102270. | External link - opens in a new window | ||
Oh J, et al Establishment of a novel human iPSC line (YCMi003-A) from a patient with dilated cardiomyopathy carrying genetic varient LMNA p.Asp364His. Stem Cell Res. 2021 Oct;56:102508. | External link - opens in a new window | ||
Lee SH et al. Generation of a human induced pluripotent stem cell line YCMi004-A from a patient with dilated cardiomyopathy carrying a protein-truncating mutation of the Titin gene and its differentiation towards cardiomyocytes. Stem Cell Res. 2021 Dec 16;59:102629. | External link - opens in a new window | ||
특허출원 : 인간 전분화능줄기세포 유래 심근세포를 이용한 약물의 부정맥 위험성 평가 방법, 출원인 : 문성환 등, 출원번호 : 10-2021-0071052, 출원일자 : 2021년 6월 1일 |
|||
특허출원 : 인간 전분화능줄기세포 유래 심근세포를 이용한 약물의 부정맥 위험성 평가 방법, 출원인 : 문성환 등, 출원번호 : PCT/KR2021/008305, 출원일자 : 2021년 6월 30일 |
|||
Park SJ et al. Effect and application of cryopreserved three-dimensional microcardiac spheroids in myocardial infarction therapy. Clin Transl Med. 2022 Jan;12(1):e721. | External link - opens in a new window | ||
Ye E et al. Effect of duty cycles of tumor-treating fields on glioblastoma cells and normal brain organoids,International journal of oncology. Int J Oncol. 2022 Jan;60(1):8. | External link - opens in a new window | ||
Kook MG et al. Generation of Cortical Brain Organoid with Vascularization by Assembling with Vascular Spheroid. Int J Stem Cells. 2022 Feb 28;15(1):85-94. | External link - opens in a new window | ||
Cha YJ et al. Derivation of YCMi005-A, a human-induced pluripotent stem cell line, from a patient with dilated cardiomyopathy carrying missense variant in TPM1(p.Glu192Lys). Stem Cell Res. 2022 Apr;60:102707. | External link - opens in a new window | ||
Lee JY et al. Human palatine tonsils are linked to alzheimer's disease through function of reservoir of amyloid beta protein associated with bacterial infection. Cells. 2022 Jul 24;11(15):2285. | External link - opens in a new window | ||
Kang JY et al. Generation of a heterozygous TPM1-E192K knock-in human induced pluripotent stem cell line using CRISPR/Cas9 system. Stem Cell Res. 2022 Aug;63:102878. | External link - opens in a new window | ||
Jung SY et al. Wnt-activating human skin organoid model of atopic dermatitis induced by Staphylococcus aureus and its protective effects by Cutibacterium acnes. iScience. 2022 Sep 16;25(10):105150. | External link - opens in a new window | ||
Mun D et al. Generation of two PITX2 knock-out human induced pluripotent stem cell lines using CRISPR/Cas9 system,. Stem Cell Res. 2022 Dec;65:102940. | External link - opens in a new window | ||
Jeon SB et al. Human induced pluripotent stem cell line YCMi007-A generated from a dilated cardiomyopathy patient with a heterozygous dominant c.613C>T (p.Arg205Trp) variant of the TNN2 gene. Stem Cell Res. 2023 Mar;67:103048. | External link - opens in a new window | ||
CMC-hiPSC-022 |
특허출원 : HLA 동형접합체의 제대혈단핵구세포 유래 인간전분화능세포를 이용한 연골세포 분화용 조성물 제조방법, 출원인 : 주지현 등, 출원번호 : 10-2017-0178684, 출원일자 : 2017년 12월 22일 |
||
Kim JH et al. Korea National Stem Cell Bank. Stem Cell Res. 2021 May;53:102270. | External link - opens in a new window | ||
NU01-EiPS07 | Im YS et al. Generation of integration-free induced pluripotent stem cell line (KSCBi012-A) from urinary epithelial cells of a healthy male individual. Stem Cell Res. 2022 Aug;63:102841. | External link - opens in a new window | |
PB01-EiPS21 | Im YS et al. Generation of integration-free induced pluripotent stem cell line (KSCBi017-A) from peripheral blood mononuclear cells of a healthy male individual. Stem Cell Res. 2022 Dec;65:102965. | External link - opens in a new window |
종류 | 세포주 명 | 참고문헌 | DOI Link |
---|---|---|---|
Disease -Specific hiPSC |
DKH005i-A | Park et al. Generation of human induced pluripotent stem cells from peripheral blood mononuclear cells of a Senior-Loken syndrome patient. Stem Cell Res. 2019 Dec;41:101648. | External link - opens in a new window |
Kim JH et al. Korea National Stem Cell Bank. Stem Cell Res. 2021 May;53:102270. | External link - opens in a new window | ||
DKH090i-A | Kim JH et al. Korea National Stem Cell Bank. Stem Cell Res. 2021 May;53:102270. Park et al. Generation of a human induced pluripotent stem cell line from a patient with Leber congenital amaurosis. Stem Cell Res. 2020 Mar;43:101725. | External link - opens in a new window | |
Kim JH et al. Korea National Stem Cell Bank. Stem Cell Res. 2021 May;53:102270. | External link - opens in a new window | ||
LQT01-hiPSC | Lee Y et al. Establishment of a human induced pluripotent stem cell line, KSCBi015-A, from a long QT syndrome type 2 patient harboring a KCNH2 mutation. Stem Cell Res. 2021 Oct 13;57:102570. | External link - opens in a new window | |
LQT08-hiPSC | Lee Y et al. Establishment of a human induced pluripotent stem cell line, KSCBi015-A, from a long QT syndrome type 1 patient harboring a KCNQ1 mutation. Stem cell research. 2021 Oct;56:102521. | External link - opens in a new window |
종류 | 세포주 명 | 참고문헌 | DOI Link |
---|---|---|---|
Fluorescent protein-tagged hiPSC | NCRM5AS1-iCAGcGFP.c9 | Luo et al. Stable enhanced green fluorescent protein expression after differentiation and transplantation of reporter human induced pluripotent stem cells generated by AAVS1 transcription activator-like effector nucleases. Stem Cells Transl Med. 2014 Jul;3(7):821-35. | External link - opens in a new window |
특허출원 : 대뇌 오가노이드-모터뉴런 스페로이드 구조체 및 이의 제조방법, 출원인 : 최정우 등, 출원번호 : 10-2020-0154027, 출원일자 2020년 11월 17일 |
|||
Kim JH et al. Korea National Stem Cell Bank. Stem Cell Res. 2021 May;53:102270. | External link - opens in a new window | ||
CMC-003i-Nestin.EGFP | Lee Y et al. Generation of a NESTIN-EFGP reporter human induced pluripotent stem cell line, KSCBi005-A-1, using CRISPR/Cas9 nuclease. Stem. Cell Res. 2019 Oct;40:101554. | External link - opens in a new window | |
Kim JH et al. Korea National Stem Cell Bank. Stem Cell Res. 2021 May;53:102270. | External link - opens in a new window | ||
CMC-003i-Pdx1.EGFP | Lee Y et al. Generation of a PDX1-EFGP reporter human induced pluripotent stem cell line, KSCBi005-A-3, using CRISPR/Cas9 system. Stem Cell Res. 2019 Dec;41:101632. | External link - opens in a new window | |
Kim JH et al. Korea National Stem Cell Bank. Stem Cell Res. 2021 May;53:102270. | External link - opens in a new window |
종류 | 세포주 명 | 참고문헌 | DOI Link |
---|---|---|---|
Gene-Edited hiPSC | hiPSC-TLR2KO | Han HJ et al. Generation of a TLR2 knockout human induced pluripotent stem cell line using CRISPR/Cas9. Stem Cell Res. 2021 Oct 19;57:102578. | External link - opens in a new window |
hiPSC-TLR3KO-A49 | Han HJ et al. Establishment of a TLR3 homozygous knockout human induced pluripotent stem cell line using CRISPR/Cas9. Stem Cell Res. 2021 Apr;52:102187. | External link - opens in a new window | |
hiPSC-TLR7KO-A59 | Han HJ et al. Generation of a TLR7 homozygous knockout human induced pluripotent stem cell line using CRISPR/Cas9. Stem Cell Res. 2019 Oct;40:101520. | External link - opens in a new window | |
hiPSC-TLR8KO-A10 | Han HJ et al. Generation of a KSCBi005-A-5(TLR8KO-A10) homozygous knockout human induced pluripotent stem cell line using CRISPR/Cas9. Stem Cell Res. 2019 Oct;40:101561. | External link - opens in a new window | |
hFSiPS1_DUSP6KO |
특허출원 : DUSP6가 결핍된 줄기세포 및 이의 용도 (DUSP6 deficient stem cells and their use), 출원인 : 국립보건연구원장, 출원번호 : 10-2022-0073479, 출원일자 : 2022년 6월 16일 |
||
Yoo DH et al. DUSP6 is a memory retention feedback regulator of ERK signaling for cellular resilience of human pluripotent stem cells in response to dissociation. Sci Rep. 2023 Apr 7;13(1):5683. | External link - opens in a new window | ||
hFSiPS1_DUSP6KOA |
특허출원 : DUSP6가 결핍된 줄기세포 및 이의 용도 (DUSP6 deficient stem cells and their use), 출원인 : 국립보건연구원장, 출원번호 : 10-2022-0073479, 출원일자 : 2022년 6월 16일 |
||
Yoo DH et al. DUSP6 is a memory retention feedback regulator of ERK signaling for cellular resilience of human pluripotent stem cells in response to dissociation. Sci Rep. 2023 Apr 7;13(1):5683. | External link - opens in a new window |