contents area
연구성과(결과보고서,논문,특허)
detail content area
- 작성일2020-02-07
- 최종수정일2020-02-07
- 담당부서연구기획과
- 연락처043-719-8033
- 879
Scientific Reports, 2019. 9(1), 1382-, DOI: https://doi.org/10.1038/s41598-018-37832-9
The Korea Biobank Array: Design and Identification of coding variants associated with blood biochemical Traits
Sanghoon Moon, Young Jin Kim;Sohee Han;Mi Yeong Hwang;Dong Mun Shin;Min Young Park;Yontao Lu;Kyungheon Yoon;Hye-Mi Jang;Yun Kyoung Kim;Tae-Joon Park;Dae Sub Song;Jae Kyung Park;Juyoung Lee;Jong-Eun Lee;Bong-Jo Kim
Abstract
We introduce the design and implementation of a new array, the Korea Biobank Array (referred to as KoreanChip), optimized for the Korean population and demonstrate findings from GWAS of blood biochemical traits. KoreanChip comprised >833,000 markers including >247,000 rare-frequency or functional variants estimated from >2,500 sequencing data in Koreans. Of the 833 K markers, 208 K functional markers were directly genotyped. Particularly, >89 K markers were presented in East Asians. KoreanChip achieved higher imputation performance owing to the excellent genomic coverage of 95.38% for common and 73.65% for low-frequency variants. From GWAS (Genome-wide association study) using 6,949 individuals, 28 associations were successfully recapitulated. Moreover, 9 missense variants were newly identified, of which we identified new associations between a common population-specific missense variant, rs671 (p.Glu457Lys) of ALDH2, and two traits including aspartate aminotransferase (P = 5.20 × 10−13) and alanine aminotransferase (P = 4.98 × 10−8). Furthermore, two novel missense variants of GPT with rare frequency in East Asians but extreme rarity in other populations were associated with alanine aminotransferase (rs200088103; p.Arg133Trp, P = 2.02 × 10−9 and rs748547625; p.Arg143Cys, P = 1.41 × 10−6). These variants were successfully replicated in 6,000 individuals (P = 5.30 × 10−8 and P = 1.24 × 10−6). GWAS results suggest the promising utility of KoreanChip with a substantial number of damaging variants to identify new population-specific disease-associated rare/functional variants.
- DOI: https://doi.org/10.1038/s41598-018-37832-9
- ISBN or ISSN: 2045-2322
- 본 연구는 질병관리본부 연구개발과제연구비를 지원받아 수행되었습니다.
- This research was supported by a fund by Research of Korea Centers for Disease Control and Prevention.
